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2 The surface tangent paradox and the difference

vector quotient of a secant plane
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Abstract

If a one-variable function is sufficiently smooth, then the limit position

of secant lines its graph is a tangent line. By analogy, one would expect

that the limit position of secant planes of a two-variable smooth function

is a plane tangent to its graph. Amazingly, this is not necessarily true,

even when the function is a simple polynomial. Despite this paradox,

we show that some analogies with the one-variable case still hold in the

multi-variable context, provided we use a particular vector product: the

Clifford’s geometric one.

1 Introduction.

The classical Schwarz surface area paradox1 provides a counterexample concern-
ing the definition of the area of a curved surface. It is a divergence phenomenon,
that is seldom presented, even at the end of an Advanced Calculus course2. Here,
we show that a local version of this paradox deals with the very definition of
the tangent to the graph of a smooth function. For simplicity, we only consider
functions of one and two real variables.

Let us first recall the link between lines secant and tangent the graph of a
one-variable smooth function g : I ⊆ R → R. If you consider the line passing
through two distinct points

(
a, g(a)

)
,
(
b, g(b)

)
∈ I × R of the graph of g, then

this secant line becomes the line tangent the graph of g at point
(
x0, g(x0)

)
, as

the distinct points a and b converge towards x0, whatever is the way they do it,
provided g is sufficiently smooth

(
a C1-function, let’s say

)
. Analytically, this

corresponds to the existence of the strong derivative3 of g at point x0, which
coincides with the classical derivative g′(x0), provided the strong derivative

∗Università di Roma “Tor Vergata”, Dipartimento di Matematica, via delle Ricerca Scien-
tifica 1, 00133 Roma, Italy. Email: roselli@mat.uniroma2.it

1See [13], [9], and [15].
2See [2] at pages 142–144.
3See [10], and [6].
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exists (as it happens for a C1-function). More precisely,

lim
a,b→x0
a 6=b

g(b)− g(a)

b − a
= g′(x0) (1)

By analogy, one would expect that, for a two-variable smooth function, the plane
tangent to its graph at a fixed point would be the limit position of the secant
plane passing through three non-collinear points, as these three non-collinear
points converge to that fixed point. Paradoxically, this is not the case.

1.1 Counterexample.

Let us consider as two-variable smooth function f the polynomial f(v) = v ·v =
x2 + y2, when v = xe1 + ye2, and {e1, e2} is an orthonormal basis of the two-
dimensional vector4 Euclidean space E2, with scalar product u · w, with u,w

vectors of E2. So, e1 ·e2 = 0, and e1 ·e1 = e2 ·e2 = 1. If a = 0, b = −δe1+ηe2,
and c = δe1 + ηe2, then the Cartesian equation of the plane passing through
points

(
a, f(a)

)
,
(
b, f(b)

)
, and

(
c, f(c)

)
can be represented, in the (x, y, z)-

coordinates, by the relation

ηz = (δ2 + η2)y (2)

As the limit of
δ2 + η2

η
, as δ, η → 0, does not exist, then the secant plane (2)

does not necessarily converge to the plane z = 0, which is tangent to the graph
of f at point 0.

This counterexample illustrates the tangent paradox : a plane secant the
graph of a smooth two-variable function f at points

(
a, f(a)

)
,
(
b, f(b)

)
, and

(
c, f(c)

)
can assume limit positions that depend on the way the three non-

collinear points a, b and c converge to x0. For example, if you consider f , a, b
and c as in the counterexample,

• if η = δ → 0, then the limit plane would be z = 0, the tangent plane;

• if η = δ2 → 0, then the limit plane would be z = y, which is not the
tangent plane;

• if η = δ3 → 0, then the limit plane would be y = 0, which is even
orthogonal to the tangent plane!

So, contrary to the one-variable case, we cannot simply say that the tangent
plane to a smooth two-variable function is the limit position of its secant planes.

4Vectors, also called points, will be indicated by bold Latin letters; real numbers, also
called scalars, will be denoted by lower-case Latin or Greek letters.
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1.2 In search for analogies.

Despite such paradox, one can ask if any analogy with the one-variable case still
holds for two-variable smooth functions.
In the (x, z)-plane, the Cartesian equation of the line passing through

(
a, g(a)

)
,

(
b, g(b)

)
(with a 6= b) is

z = g(a) +
g(b)− g(a)

b− a
(x− a) (3)

The existence of the strong derivative (1), and the continuity of g at x0 imply
that, as a, b → x0, relation (3) becomes relation

z = g(x0) + g′(x0)(x− x0) ,

which represents the line tangent the graph of g at point
(
x0, g(x0)

)
. The

relation representing the plane tangent the graph of the two-variable function f :
Ω ⊆ E2 → R at point

(
v0, f(v0)

)
can be written in the (v, z)-space E2 × R as

z = f(v0) +∇f(v0) · (v − v0) .

So, we wonder if, in analogy with (3), there exists a relation

z = f(a) + q · (v − a) (4)

representing the plane passing through
(
a, f(a)

)
,
(
b, f(b)

)
, and

(
c, f(c)

)
, with

vector q = q(f,a,b,c) depending on f , a, b and c, as the classical difference scalar

quotient q = q(g,a,b) =
g(b)−g(a)

b−a
in (3) depends on g, a, and b.

In this work we show5 that vector q(f,a,b,c) can still be expressed as a dif-
ference quotient, provided the corresponding vector product is the Clifford’s
geometric vector product (geometric product, for short). In order to show
this, we will explain, in the next Section, what the geometric product is, at
least between vectors in the two-dimensional Euclidean space E2. Here, we an-
ticipate a consequence6 of Theorem 1, that allows to express the vector quotient
q as a fully symmetric linear combination of the outward normals of the oriented
triangle T determined by points a, b, and c:

q = q(f,a,b,c) =
f(a) + f(b)

2τ
∂⊥
c
+

f(a) + f(c)

2τ
∂⊥
b
+

f(b) + f(c)

2τ
∂⊥
a

(5)

where ∂c = b− a, ∂b = a− c, and ∂a = c− b, and τ is the area of the triangle
T , as illustrated by the figure below

5See Theorem 1 at the end of this article.
6See Theorem 2.
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a
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c

Remark. The vector quotient q is fully symmetric in the following sense:

q(f,v
σ(1),vσ(2),vσ(3)) = q(f,v1,v2,v3) for each σ ∈ S3,

where S3 is the symmetric group of all permutations of the set {1, 2, 3}.
Remark. The Schwarz tangent paradox tells us that, despite the limit (1) exists
when g ∈ C1(I),

lim
a,b,c→x0

a,b,c not collinear

q(f,a,b,c) doesn’t exist,

even when the non-linear two-variable function f is C∞(E2), as in the foregoing
counterexample.

2 The geometric product of two vectors in E2.

There are many ways to define the geometric product in an arbitrary quadratic
space7. Here, for simplicity, we limit ourselves to present the geometric product
between vectors of a two-dimensional Euclidean space E2, having u·v as positive
definite symmetric bilinear form, and |v| =

√
v · v as norm (where u,v are

vectors of E2).

2.1 Axioms.

we denote by G2 the associative algebra of polynomials of vectors of E2 (poly-
vectors, for short) satisfying the following rules:

(A1) scalars are considered as poly-vectors of degree 0, and v0 = 1; non-zero
vectors of E2 are considered as poly-vectors of degree 1;

(A4) addition in R, addition in E2, and addition in G2 they all coincide8; mul-
tiplication in R, multiplication of a scalar and a vector in E2, and multi-
plication of poly-vectors in G2 they all coincide9;

7See [12], [11], [3], [7], [5], [8], or [14], for instance.
8This implies that the zero scalar coincides with the null vector in G2. That is, 0 = 0.
9As a consequence of this axiom, it is natural to denote the geometric product by juxta-

position.
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(A3) scalars commute with vectors, that is

αv = vα

for each scalar α ∈ R, and vector v ∈ E2;

(A5) scalars and non-zero vectors of E2 are linearly independent10 in G2.

(A6) the Euclidean quadratic form |v|2 = v · v in E2 is the geometric product
of the vector v ∈ E2 with itself, that is

|v|2 = vv = v2 .

Elements of G2 are called multivectors.

2.2 Basic properties.

A first consequence of the foregoing axioms concerns invertibility of non-zero
vectors.

Proposition. Every non-zero vector v ∈ E2 is invertible with respect to the

geometric product, and v−1 =
1

|v|2v is still a vector.

Proof. If |v| 6= 0, then vv−1 = v
1

|v|2v =
1

|v|2vv = 1.

Remark. By rule A3, notations like
v

|v| or
v

|v|2 are unambiguous. So, we can

write v−1 =
v

|v|2 .

Axioms allow to clarify the nature of a particular symmetric poly-vector.

Proposition. The poly-vector
1

2
(uv+vu) is a number, whatever are the vectors

u,v ∈ E2.

Proof. By axiom A6, we have that (u+ v)2 = |u+ v|2 is a scalar. Moreover,

(u+ v)2 = (u+ v)(u + v) = uu+ uv + vu+ vv = |u|2 + uv + vu+ |v|2 .

As also |u|2 and |v|2 are scalars, then we have that

uv + vu = (u+ v)2 − |u|2 − |v|2 ∈ R

10That is, α+ βv = 0 if and only if α = β = 0
(

where α, β ∈ R, and 0 6= v ∈ E2

)

.
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Remark 1. You can verify that the form β, corresponding to the foregoing
poly-vector β(u,v) = 1

2 (uv+ vu), is bilinear, symmetric and coincide with the

Euclidean scalar product u · v, that is
1

2
(uv + vu) = u · v, for each couple of

vectors u,v ∈ E2. This allows to control the non-commutativity of the geometric
product between vectors u,v in E2 as follows

vu = 2(u · v)− uv.

As

uv =
1

2
(uv + vu) +

1

2
(uv − vu) = (u · v) + 1

2
(uv − vu),

then geometric product will be completely explained once the nature of the
poly-vector

u ∧ v =
1

2
(uv − vu)

is clarified.
We first notice that u∧u = 0, u∧v = −v∧u, and u∧v is bilinear, that is

(αu) ∧ v = u ∧ (αv) = α(u ∧ v), and u ∧ (v +w) = (u ∧ v) + (u ∧w)

for every scalar α, and vectors u,v, and w in E2.
In order to investigate the nature of the multivector u∧v, let us observe that,

if {g1,g2} is an orthogonal basis for E2, u = µ1g1+µ2g2, and v = ν1g1+ ν2g2,
then

g1 · g2 = 0 , g1 ∧ g2 = g1g2 , and u ∧ v = det

(
µ1 µ2

ν1 ν2

)

g1g2 (6)

We now prove that the dimension of the associative vector algebra G2 is 4.

Proposition 1. If {g1,g2} is an orthogonal basis of E2, then {1, g1, g2, g1g2}
is a basis of G2.

Proof. Let us prove that {1 , g1 , g2 , g1g2} generates G2.
Every element in G2 is a polynomial of vectors, that is a linear combination

of product of vectors. As every vector is a linear combination of vectors g1, and
g2, by the distributivity property, every product of vector can be written as a
linear combination of product of vectors g1, and g2. As vectors g1, and g2 anti-
commute (g1g2 = −g2g1), every product of vectors g1, and g2 can be reduced
to the product ǫ(g1)

h(g2)
k for some integer exponents h, k ∈ N and ǫ ∈ {1,−1}.

As (gi)
l is a scalar if the integer exponent l is even, and it is a multiple of vector

gi if l is odd, then every poly-vector can be rewritten as a linear combination of
elements in {1 , g1 , g2 , g1g2}. This proves that {1 , g1 , g2 , g1g2} generates
G2. It remains to show that 1, g1, g2, and g1g2 are linearly independent. This
means that we have to show that, if

α0 + α1g1 + α2g2 + α3g1g2 = 0 (7)
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then necessarily α0 = α1 = α2 = α3 = 0. First of all, let us observe that
g1g2 6= 0. By contradiction, if g1g2 = 0, then by multiplying it from left by
(g1)

−1 (recall that both vectors g1, and g2 are invertible), we would obtain
g2 = 0, a contradiction with axiom A5. Let us now multiply the expression (7)
from left by g1, and from right by (g1)

−1. Then, we can write the following
equivalent relations

g1(α0 + α1g1 + α2g2 + α3g1g2)(g1)
−1 = 0

g1α0(g1)
−1 + g1α1g1(g1)

−1 + g1α2g2(g1)
−1 + g1α3g1g2(g1)

−1 = 0
α0 + α1g1 + α2g1g2(g1)

−1 + α3g1g1g2(g1)
−1 = 0

α0 + α1g1 − α2g2g1(g1)
−1 − α3g1g2g1(g1)

−1 = 0
α0 + α1g1 − α2g2 − α3g1g2 = 0

By summing the last relation with (7), and then dividing the result by two, we
obtain that

α0 + α1g1 = 0

Rule A5 implies that α0 = α1 = 0. So, the initial expression (7) reduces to

α2g2 + α3g1g2 = 0 (8)

Let us multiply the foregoing expression from left by g2, and from right by
(g2)

−1. Then, we can write the following equivalent relations

g2α2g2(g2)
−1 + g2α3g1g2(g2)

−1 = 0
α2g2 + α3g2g1 = 0
α2g2 − α3g1g2 = 0

As before, by summing the last relation with (8), and then dividing the result
by two, we obtain that α2 = 0. So, we end to the expression α3gg2 = 0. By
multiplying it from left by (g2)

−1(g1)
−1, we obtain α3 = 0.

The foregoing result and (6) imply that u ∧ v = 0 if and only if u and v

are linearly dependent. We can also notice that the geometric product of two
orthonormal vectors does not depend on those particular factors, but only on
their order.

Proposition. If the basis {e1, e2} for E2 is not only orthogonal, but also or-
thonormal

(
that is, (e1)

2 = (e2)
2 = 1

)
, then the geometric product e1e2 ∈ G2

does not depend on the particular orthonormal basis {e1 , e2}, but only on its
orientation (that is, on the order the two vectors of the basis are given).

Proof. If {e′1, e′2} is any other orthonormal basis for E2, e
′
1 = ǫ1,1e1+ ǫ1,2e2 and

e′2 = ǫ2,1e1 + ǫ2,2e2, then

e′1e
′
2 = det

(
ǫ1,1 ǫ1,2
ǫ2,1 ǫ2,2

)

e1e2 = ±e1e2

7



as

(
ǫ1,1 ǫ1,2
ǫ2,1 ǫ2,2

)

is an orthogonal matrix.

That is why we can denote the multivector e1e2 = I2, and call it an ori-
entation of E2. So, by Proposition 1, the basic multivectors in G2 are scalars,
vectors, and multiples of orientations. You can also notice that

(I2)
2 = I2I2 = e1e2e1e2 = e1(e2e1)e2 = e1(−e1e2)e2 = −e1e1e2e2 =

−(e1e1)(e2e2) = −1

So, we have that I2 is invertible in G2 and (I2)
−1 = −I2. Doesn’t I2 strongly

resemble the imaginary unit ?
Finally, we can write the geometric product between two vectors u,v ∈ E2

in terms of their coordinates with respect to any orthonormal basis {e1, e2} of
E2,

uv = (u · v) + u ∧ v = (µ1ν1 + µ2ν2) + det

(
µ1 µ2

ν1 ν2

)

I2

= |u| |v|(cos θ + I2 sin θ)

where u = µ1e1 + µ2e − 2, and v = ν1e1 + ν2e2, angle θ is oriented in E2 so
that vector u can rotate towards vector v spanning angle θ ∈ (0, π), provided u

and v are linearly independent (otherwise, uv = u · v).

2.3 Comparing vectors in E2 ⊂ G2 with complex numbers.

You have probably remarked some similarities with complex numbers (I2 alge-
braically behaves in G2 as the imaginary unit i does in C). However, you should
notice that while G2 has real-dimension four, C has real-dimension two. That
is, scalars, vectors and orientations are distinguished in G2, while in C they all
collapse into the notion of ”complex number”, viewed as a two-dimensional real
vector. In other words, the geometric product of two vectors in E2 is not itself
a vector: it is the sum of a scalar and a multiple of the orientation I2. Instead,
the product of two complex numbers

(
viewed as vectors in R2

)
is still a complex

number
(
i.e., a vector in R2

)
. Moreover, C is a division algebra (every non-zero

element is invertible), while G2 is not: 1+e1, and 1−e1 are not invertible in G2,
as (1 + e1)(1− e1) = 0. The product in C is commutative, while the geometric
product in G2 is not. The geometric product in G2 is invariant by rotations in
E2, while the product in C is not invariant by rotations in R

2.

2.4 The determinant of a 2× 2 real matrix viewed in G2.

Let us notice that, for every vector v ∈ E2, then

vI2 = (ν1e1 + ν2e2)e1e2 = ν1e1e1e2 + ν2e2e1e2 = −ν1e1e2e1 − ν2e1e2e2

= −e1e2(ν1e1 + ν2e2) = −I2v = ν1e2 − ν2e1 ∈ E2

which corresponds to the vector obtained by rotating vector v of a right angle
according to the orientation I2 = e1e2, as illustrated below,

8



e1

e2
v

vI2

e1

e2
v

I2v

Thanks to the foregoing results we can now proceed to show the two key facts
that link the geometric product to the basic notion of secant plane.

Proposition. The determinant of a 2x2 real matrix is a Clifford ratio in G2.

Proof. Let us consider the rows of a 2× 2 real matrix

(
µ1 µ2

ν1 ν2

)

as the components of two vectors u = µ1e1 + µ2e2, and v = ν1e1 + ν2e2 in E2

with respect to some orthonormal basis {e1, e2}.
As u ∧ v = det

(
µ1 µ2

ν1 ν2

)

e1e2 = det

(
µ1 µ2

ν1 ν2

)

I2, then we can write

det

(
µ1 µ2

ν1 ν2

)

= (u ∧ v)(I2)
−1 , which is a ratio in G2 .

Remark. You can verify that (u∧v)(I2)
−1 = (I2)

−1(u∧v). So the expression

det

(
µ1 µ2

ν1 ν2

)

=
u ∧ v

I2
for the determinant of a 2×2 matrix is unambiguous.

Proposition 2. The determinant a 2x2 real matrix is a scalar product.

Proof. By using the same assumptions of the foregoing proof, we have that

det

(
µ1 µ2

ν1 ν2

)

= (u ∧ v)(I2)
−1 = −(u ∧ v)I2 = (v ∧ u)I2 =

1

2
(vu− uv)I2

=
1

2
(vuI2 − uvI2) =

1

2

[
v(uI2) + (uI2)u

]
= (uI2) · v .

3 The difference vector quotient of a secant plane.

Let us reformulate the relations defining the plane secant the graph of a function.
In the one-variable case the equation of the line secant the graph of g : I → R at

9



points
(
a, g(a)

)
,
(
b, g(b)

)
∈ I × R can be written, in the Cartesian (x, z)-plane,

in two equivalent ways: (3) or

det

(
x− a z − g(a)
b− a g(b)− g(a)

)

= 0 .

In the (x, y, z)-coordinate system, the equation of the plane secant the graph of
f at points (α1, α2, f(a)), (β1, β2, f(b)), (γ1, γ2, f(c)) ∈ R3 can be written as

det





x− α1 y − α2 z − f(a)
β1 − α1 β2 − α2 f(b)− f(a)
γ1 − α1 γ2 − α2 f(c)− f(a)



 = 0 (9)

where a = α1e1 + α2e2, b = β1e1 + β2e2, c = γ1e1 + γ2e2 are vectors (that we
also call points) in the two-dimensional domain Ω ⊆ E2 of f , and {e1, e2} is an
orthonormal basis of E2. In the following, we show how to rewrite (9) in the
E2-coordinate-free setting (4). The following equivalences start from a Laplace
expansion of the determinant (9).

(
z − f(a)

)
det

(
β1 − α1 β2 − α2

γ1 − α1 γ2 − α2

)

−
(
f(b)− f(a)

)
det

(
x − α1 y − α2

γ1 − α1 γ2 − α2

)

+

+
(
f(c)− f(a)

)
det

(
x − α1 y − α2

β1 − α1 β2 − α2

)

= 0

(
z − f(a)

)[
(b− a) ∧ (c− a)

]
(I2)

−1 =
(
f(b)−f(a)

)[
(x− a)∧(c − a)

]
(I2)

−1 −
(
f(c)−f(a)

)[
(x− a)∧(b− a)

]
(I2)

−1

(
z − f(a)

)[
(b− a) ∧ (c− a)

]
=

(
f(b)− f(a)

)[
(x− a) ∧ (c− a)

]
−
(
f(c)− f(a)

)[
(x− a) ∧ (b− a)

]

z − f(a) =
(
f(b)− f(a)

)[
(x− a) ∧ (c− a)

][
(b− a) ∧ (c− a)

]−1
+−

(
f(c)−

f(a)
)[
(x − a) ∧ (b− a)

][
(b− a) ∧ (c− a)

]−1

z = f(a) +
(
f(b)− f(a)

)[
(x− a) ∧ (c− a)

][
(b− a) ∧ (c− a)

]−1
+−

(
f(c)−

f(a)
)[
(x − a) ∧ (b− a)

][
(b− a) ∧ (c− a)

]−1

As (b− a) ∧ (c− a) = a ∧ b+ b ∧ c+ c ∧ a

= I2

[

det





α1 α2

β1 β2



+det





β1 β2

γ1 γ2



+det





γ1 γ2
α1 α2





]

︸ ︷︷ ︸

2τ

,

where τ is simply the oriented11 area of the triangle having as vertices the
points a, b, and c), the foregoing equivalences, describing the secant plane, can
continue as follows

11The sign of τ is positive if and only if the geometric ratio between (b− a) ∧ (c − a) and
I2 is positive. See also [1].

10



z = f(a) + f(b)−f(a)
2τ

[
(x− a) ∧ (c− a)

]
I−1
2 − f(c)−f(a)

2τ

[
(x− a) ∧ (b− a)

]
I−1
2

z = f(a)− f(b)−f(a)
2τ

[
(c− a) ∧ (x− a)

]
I−1
2 + f(c)−f(a)

2τ

[
(b− a) ∧ (x− a)

]
I−1
2

By proposition 2, we can write

z = f(a)− f(b)−f(a)
2τ

{[
(c− a)I2

]
· (x− a)

}

+ f(c)−f(a)
2τ

{[
(b− a)I2

]
· (x − a)

}

z = f(a)−
{
f(b)−f(a)

2τ

[
(c− a)I2

]
− f(c)−f(a)

2τ

[
(b− a)I2

]}

· (x− a)

z = f(a)− 1
2τ

{[(
f(b)− f(a)

)
(c− a)−

(
f(c)− f(a)

)
(b− a)

]

I2

}

· (x− a)

This allows to explicitly write vector q = q(f,a,b,c) of expression (4)

q = − 1

2τ

{[(
f(b)− f(a)

)
(c − a)−

(
f(c)− f(a)

)
(b− a)

]

I2

=
[(
f(b)− f(a)

)
(c− a)−

(
f(c)− f(a)

)
(b− a)

][
(b− a) ∧ (c− a)

]−1
,

and proves the following main result of this article.

Theorem 1. The plane secant the graph of a two-variable function f : Ω ⊆
E2 → R at points

(
a, f(a)

)
,
(
b, f(b)

)
, and

(
c, f(c)

) (
where a, b, and c are

three non-collinear points in the domain Ω of f
)
, can be represented in the

(v, z)-space E2 × R by the relation

z = f(a) + q · (v − a) ,

where vector q = q(f,a,b,c) is the geometric quotient in G2 between the vector

(
f(b)− f(a)

)
(c− a)−

(
f(c)− f(a)

)
(b− a),

and the orientation

(b− a) ∧ (c− a).

4 The vector quotient as a linear combination

in E2.

Computations in G2 allow to explicitly express the foregoing difference vector
quotient q = q(f,a,b,c) as a linear combination of normals to the triangle defined
by a, b, and c.

Let ∂a = c− b, ∂b = a− c, ∂c = b− a; so, ∂a + ∂b + ∂c = 0. Moreover

(b− a) ∧ (c− a) = ∂a ∧ ∂b = ∂b ∧ ∂c = ∂c ∧ ∂a = 2τI2,
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where τ is the signed area of the oriented triangle determined by the ordered
points a, b, and c, whose sign depends on the orientation I2. Then,

(
f(b)−f(a)

)
(c−a)−

(
f(c)−f(a)

)
(b−a) =

(
f(a)−f(b)

)
∂b−

(
f(c)−f(a)

)
∂c

=f(a)
[
∂b + ∂c

]
− f(b)∂b − f(c)∂c = −

[
f(a)∂a + f(b)∂b + f(c)∂c

]

=f(a)
(
∂b + ∂c

)
+ f(b)

(
∂a + ∂c

)
+ f(c)

(
∂a + ∂b

)

=
[
f(a) + f(b)

]
∂c +

[
f(a) + f(c)

]
∂b +

[
f(b) + f(cb)

]
∂a

So, we can write

q =
{[
f(a) + f(b)

]
∂c +

[
f(a) + f(c)

]
∂b +

[
f(b) + f(c)

]
∂a

} (
2τI2

)−1

=
f(a) + f(b)

2τ
∂c(I2)

−1 +
f(a) + f(c)

2τ
∂b(I2)

−1 +
f(b) + f(c)

2τ
∂a(I2)

−1

=
f(a) + f(b)

2τ
I2∂c
︸︷︷︸

∂⊥
c

+
f(a) + f(c)

2τ
I2∂b
︸︷︷︸

∂⊥

b

+
f(b) + f(c)

2τ
I2∂a
︸︷︷︸

∂⊥
a

.

This proves our second theorem, which generalizes a lemma proved12 in [4].

Theorem 2. The plane secant the graph of a two-variable function f : Ω ⊆
E2 → R at points

(
a, f(a)

)
,
(
b, f(b)

)
, and

(
c, f(c)

) (
where a, b, and c are three

non-collinear points in the domain Ω of f
)
, can be represented in the (v, z)-space

E2 × R by the relation z = f(a) + q · (v − a), where vector q = q(f,a,b,c) is the
linear combination (5).

Remark. If f is the affine function f(x) = (v · x) + φ, for some v ∈ E2 and
φ ∈ R, then you can verify that q(f,a,b,c) = v.
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